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Failure loads for model adhesive joints 
subjected to tension, compression or torsion 

A. N. GENT, O. H. YEOH*  
Institute of Polymer Science, The University of Akron, Akron, Ohio 44325, USA 

The Griffith fracture criterion has been applied to model adhesive joints subjected to 
tension, compression or torsion. Two model joints are considered: a rigid cylinder partly 
embedded in and bonded to an elastic cylinder (termed "rod joint" here), and an elastic 
cylinder inserted partway into, and bonded to, a rigid tube (termed "sleeve joint" here). 
Both types of joint have been constructed, using vulcanized rubber cylinders bonded to 
aluminium rods and sleeves. Measurements have been made of the failure loads under 
tension, compression and torsional loading. They were found to be in satisfactory agree- 
ment with the theoretical predictions except, in some instances, for rod joints subjected 
to tension or torsional loading when the failure loads were as much as three times the 
predicted values. This discrepancy is attributed to friction between the partially-detached 
rubber cylinder and the embedded rod, enhanced to a great extent by the tendency of 
the rubber cylinder to shrink in radius on stretching or twisting. A theoretical analysis 
of the effect of friction is presented. It predicts increasingly large pull-out forces or 
torques, as the depth of embedment increases, until frictional seizure occurs. Experi- 
mentally, frictional effects were limited by applying an internal gas pressure to the 
region being detached. All of the failure loads were then found to be in satisfactory 
agreement with the original theory, ignoring frictional effects. Thus, a simple fracture 
energy criterion is shown to govern the failure of adhesive joints under complex loading 
conditions, with or without friction acting at the interface. 

1. Introduction 
In general, the strength of an adhesively-bonded 
joint is a function of the mode of loading and the 
dimensions and elastic properties of the bonded 
components, as well as of  the intrinsic strength of 
the interface. The objective of failure analysis of 
adhesive joints is to relate the breaking load to 
these diverse factors. One approach uses a simple 
energy criterion for fracture, in terms of a charac- 
teristic energy for breaking apart the interface. 
Originally proposed by Griffith [1 ] for the brittle 
fracture of solids, an energy criterion for fracture 
has been successfully applied to the separation of 
two adhering solids by a number of previous 
authors (for example [2-13]) .  

In applying an energy criterion to adhesive 
failure, it is first necessary to identify an initial 
point of separation, usually a flaw or point of high 
stress concentration at the interface between the 
two adhering solids. Then, failure is assumed to 
take place by growth of this initial debond until 
the joint is completely broken. An energy balance 
is formulated for a small growth of the debond: 
changes in the strain energy of the joint and the 
potential energy of the loading device are equated 
to the characteristic energy needed for debonding. 
This energy balance provides the required relation- 
ship between the breaking load, the properties of 
the two adhering solids and the dimensions of the 
joint. It has been applied to the debonding of 
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laminates by Kendall [10-12] and to the pull-out 
of embedded inextensible cords by Gent et al. [13]. 

Relationships obtained in this way for the failure 
load contain no adjustable parameters. Successful 
prediction of observed failure loads is therefore 
strong evidence for the validity of the proposed 
failure criterion and of the simplifying assumptions 
made in the analysis, which are, linearly elastic 
behaviour of the adherends and substantially 
homogeneous deformation of parts of each 
adherend. Moreover, the predicted failure loads 
may be used as the basis for rational design of 
bonded components, once the basic assumptions 
of the theory have been shown to hold. Further- 
more, simple test methods can be developed for 
determining the characteristic strength of bonded 
interfaces from the measured failure loads of 
suitable model joints. The analysis of the pull-out 
force of cords embedded in rubber blocks [13] has 
been employed in this way to measure the adhesion 
of tyre cords to rubber [14]. 

Strong additional support for the basic concept 
of an energy criterion governing the failure of 
adhesive joints would be provided by successful 
analysis of more complex loading conditions. In 
the present work the analysis of the pull-out force 
for an embedded rigid cylindrical rod by Gent 
et al. [13] is extended to include compressive and 
torsional failure loads also, and applied to a reverse 
geometry, in which a cylindrical rubber rod is 
partly embedded in, and bonded to, a rigid cylin- 
drical tube or sleeve. The first configuration, shown 
in Fig. la, is referred to here as the "rod joint", 
and the second, shown in Fig. lb,  as the "sleeve 
joint". Experiments on model joints, using a 
rubber vulcanizate bonded to aluminium rods and 
sleeves, are then described and the results com- 
pared to the predictions of the theoretical analysis. 
The theory is then extended to include a frictional 
interaction between the two surfaces, when they 
are pressed into close contact after debonding. 

2. Theoretical considerations 
2.1.  Rod jo in t  
The following analysis is a generalization of that 
given by Gent et  al. [13] to include compressive 
and torsional failure modes. 

A rigid rod, radius a, is partly embedded in and 
bonded to a rubber cylinder of radius r. Debond- 
ing is effected by one of the following means: 

(a) application of a tensile force, F (Fig. 2a), 
(b) application of a torque, M (Fig. 2a), 
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Figure 1 Sketch of model joints showing (a) rod joint and 
(b) sleeve joint. The rigid parts are shown shaded, the 
elastic parts not shaded. 

(c) application of a compressive force, F 
(Fig. 2b). 
Note that for the compressive experiments a hole 
was provided in the rubber cylinder to accommo. 
date the displacement of the rod, as shown schem- 
atically in Fig. 2b. 

Debonding is expected to initiate quite easily at 
the embedded end of the rod because of the high 
stress concentration there. Consider the situation 
after a small debond of length x has developed, 
The rubber cylinder may then be regarded as made 
up of three regions, i.e., 

Region A: This part is still bonded to the rod. 
It is assumed that the rubber in this region is 
unstrained. 

Region B: This part, in the form of a tube of 
length x, is no longer bonded to the rod. It is 
assumed that the rubber in this region is in a state 
of simple extension, compression, or torsion 
depending on the type of loading. 

Region C: The end region is assumed to be 
substantially in simple extension, compression or 
torsion; however, its exact state of deformation 
does not enter into consideration ~ as long as it 
remains constant under a constant (failure)load. 
Propagation of the debond by a small amount 
~c  results in the growth of Region B by an amount 
Ax at the expense of Region A. Thus, the volume 
of rubber subjected to strain increases by an 
amount lr(r 2 - -a  2)Ax and the total strain energy 
of the joint increases correspondingly. However, 
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Figure 2 Rod joint in (a) tension or torsion and (b) com- 
pression (note hole to accommodate displacement of the 
rod). The rind parts are shown shaded, the elastic parts 
not shaded. 

Y ~  
Ga = 4~r2a(r 2 -- a 2)E" (2) 

For torsion, the energy supplied by the applied 
torque, M, is MAO, where A0 is the increase in the 
angle of twist resulting from a debond propagation 
of ~x. The increase in strain energy is �89 M~O, and 
hence for debond propagation, 

�89 Mz~O > 27ra~c Ga. (3) 

But from elasticity theory, Lx0 is given by 

6 M ~ r  
40 - 7r (r '  -- a 4 )E"  (4) 

Thus, the predicted relation between G a and the 
failure torque Mf is 

3 M ]  
Ga = 27r2a(r 4 - - a  4)E (5) 

2.2 .  Sleeve jo in t  
A rubber cylinder of radius a is partly embedded 
within, and bonded to, a rigid sleeve (Fig. 3). 
Debonding is again effected by either 

(a) application of a tensile force, F, or 

the potential energy of the loading device decreases. 
The difference between the energy supplied by 
the loading device and the gain in strain energy is 
the energy available for fracture. For debond 
propagation, this energy must equal or exceed the 
energy requirement for fracture, i.e., 2~ra~cGa, 
where G a is the characteristic energy required to 
fracture unit area of the adhesive interface. 

The energy balance equation can be written 
explicitly provided the stress-strain properties of 
the rubber are known. For simplicity, it is first 
assumed that the rubber is linearly elastic with 
Young's modulus E and a shear modulus equal 
to ~/~. 

For tension and compression, the energy sup- 
plied by the load F is F e ~ x  where e is the strain in 
Region B, given by e = F/Ir (r 2 -- a 2)E. The increase 
in strain energy is �89 Fe2~x or half the work done 
by the load. Hence for debond propagation, 

�89 FeA~x> 2~raZkx G a. (1) 

Thus the relation between Ga and the failure 
force F~ in tension or compression is [13] 
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Figure 3 Sleeve joint with the rigid parts shown shaded, 
elastic parts not shaded. 
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Figure 4 Schematic diagram showing 
energy available for debond propa- 
gation, The shaded area represents 
available energy. 

(b) application of a torque,M. 
In these cases, debonding is expected to initiate at 
the rim of the sleeve where the rubber cylinder 
enters it. After a small debond of length x has 
developed, the rubber cylinder may again be regar- 
ded as made up of three regions: 

Region A: Where the rubber is still bonded to 
the sleeve and is assumed to be unstrained. 

Region B: Of length x, where the rubber has 
become debonded and is assumed to be in a state 
of simple extension or torsion. 

Region C: Assumed to remain in a state of 
simple extension or torsion under the applied 
load or torque. 
Propagation of the debond by a small amount 
~r results in the growth of Region B by ~x at the 
expense of Region A. 

Writing the energy balance equation as before 
yields the results, in tension, of 

Ga - 
4rr2 a~ E ' 

and, in torsion, of 

G a - 2~r2aS E �9 

( 6 )  

(7) 

2.3. Non-linear elast ici ty 
The assumption of linear elasticity of rubber made 
in the above analysis is strictly valid only at very 
small strains (e.g. up to about 10% in tension or 
compression). If adhesive failure occurs when the 
rubber is subjected to higher strains, then the 
relations obtained will be in error by an amount 
dependent upon the degree of departure from 
linearity. 

Some increase in accuracy can be obtained by 

assuming that the rubber obeys the statistical 
theory of rubber elasticity. It is known that the 
statistical theory gives a fairly good description of 
the stress-strain behaviour of well.vulcanized 
rubber up to moderate strains, about 50% in ten- 
sion or compression [15]. Moreover, a rubber 
obeying the statistical theory behaves substantially 
linearly in torsion [15]. Thus, Equations 5 and 7 
are expected to apply for relatively large torsional 
strains. 

Equations corresponding to Equations 2 and 6 
can be readily derived for a rubber obeying the 
statistical theory. It has been shown above that the 
energy available for debond propagation is the dif- 
ference between the work done by the applied 
load and the gain in stored energy. This available 
energy is represented in Fig. 4 by the shaded areas. 
For a non.linearly elastic rubber, Fig. 4b, the avail- 
able energy is underestimated in tension but over- 
estimated in compression if linear elasticity is 
assumed. 

The energy available for debond propagation 
~c is A A x  f e  do, where A is the cross-sectional 
area of the rubber (equal to 7r(r 2 -- a 2) for the rod 
joint and zra 2 for the sleeve joint) and o is the 
applied stress, equal to F / A  (positive for tension 
and negative for compression). For a rubber obey- 
ing the statistical theory, the stress-strain relation 
in tension-" compression can be expressed as the 
power series 

e = ~ +  + - ~ \ ~ ]  + . . . . .  (8) 

Hence the criterion for debond propagation 
becomes 

1716 



+ . . . . .  

> 2rra Ax a~. (9) 

For the rod joint, the relation between Ga and the 
failure load F~ is then 

G a = 47r2a(r 2 --a2)E -3 

+ -~ + . . . . .  (10) 

and for the sleeve joint 

Ga F ~  { 1 + 2  + 1  . . . . .  } 

(11) 

2.4. Testing the theory 
The above analysis has yielded theoretical relations 
for the fracture loads in five possible experimental 
configurations. The equations derived have no 
adjustable parameters. The characteristic failure 
energy, Ga, may thus be compared within this 
group of five experiments and it may also be 
determined independently in a peeling experiment. 
Agreement of the results from such varied experi- 
ments may be regarded as a rather stringent test of 
the applicability of the Griffith fracture energy 
criterion to the failure of adhesive joints. Further- 
more, employing the same joint for experiments 
under different modes of loading avoids some of 
the experimental uncertainties associated with 
different sample preparations. 

3. Experimental details 
3.1.  Materials 
Rubber cylinders were prepared by a hot mould- 
ing process using the following mix formulation 
in parts by weight: natural rubber, 100; zinc oxide, 
5; stearic acid, 2; sulphur, 2.5; N-cyclohexyl-2- 
benzothiazylsulphenamide, 0.6. Vulcanization was 
effected by heating for 45 min at 140 ~ C. From 
the initial slope of the stress-strain relation of 
all cylindrical specimens compressed between 
lubricated platens, the Young's modulus, E, was 
found to be 1.75 MPa. 

A proprietary adhesive, Cherrdok 205 (supplied 
by Hughson Chemicals, Lord Corporation)was 
used for bonding the rubber to aluminium rods 
and sleeves during vulcanization. Although this 

adhesive is not normally recommended for use 
alone with natural rubber, it gives a bond of 
moderate strength, yet weak enough so that 
apparent interfacial failure is obtained consistently. 
Other adhesives, such as Chemlok 220, are norm- 
ally used with natural rubber but they generally 
give a much stronger bond so that the rubber tears 
rather than detaches from the substrate. 

3.2. Test-pieces 
Rod and sleeve joints were prepared by vulcanizing 
the rubber in a transfer mould with appropriate 
aluminium inserts serving as the adherends. The 
aluminium adherends were prepared by machining 
them to size, polishing them with silicon carbide 
paper and then cleaning them with acetone before 
the Chemlok 205 adhesive was painted onto the 
curved surfaces and allowed to dry. The aluminium 
parts were then inserted into the mould before the 
rubber mix was injected and vulcanized in situ. 
For the rod joint, the rubber cylinder had a radius, 
r, of 12.4 mm and a length of 35 mm. The alumin- 
ium rod had an embedded length of 20 ram. Rods 
of various radii, in the range 0.85 to 7.5 mm, were 
employed but most of the experiments were 
carried out with rods of 5 mm radius. 

For rod joints intended for testing in com- 
pression, an end-piece and rod without ar~y adhesive 
was used at one end of the specimen to form the 
central hole and fiat end. For other test-pieces, a 
flat aluminium end-piece painted with Chemlok 
220 was used at one end. This facilitated gripping 
of the end of  the specimen during testing and use 
of the stronger Chemlok 220 adhesive insured 
that premature failure did not occur at this end. 

For the sleeve joint, the aluminium sleeve had 
a length of 35 or 15 mm and an internal radius 
ranging from 6.35 to 11.35 mm. The external 
radius of the rubber cylinder was the same as the 
internal radius of the sleeve. 

To determine the adhesive fracture energy G a 
independently, a peel test-piece was used, consist, 
ing of a strip of rubber, 25 mm wide, 75 mm long 
and 1.5 mm thick, bonded to an aluminium plate 
with the same Chemlok 205 adhesive. 

3.3. Tes t  p rocedures  
All experiments were performed at room tempera- 
ture, using an Instron universal testing machine. 
For torsion tests, a simple pulley system was used 
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TABLE I Results from peeling experiments 

Speed (ram min-1 ) G a (J m -2 ) 

0.5 119 • 10 
5 143 • 12 

50 173 • 20 

to convert the vertical movement of the machine 
cross-head to a rotation of the test-piece. 

Peeling experiments were performed at a strip- 
ping angle of 90 ~ and at speeds of 0.5, 5 and 
50 mm rain -~ . All other experiments were per- 
formed at  a cross-head speed of 5 mm min-1. With 
the pulley system used, this corresponds to about 
25 x 10 -3 radians min -1 for  the torsion experi- 
ment. 

4. Results and discussion 
4.1. Determination of Ga 
Table I gives the results obtained from peeling 
experiments. The characteristic energy G a for 
adhesive failure was calculated from the relation 

Ga = Fp/w (12) 

where Fp is the steady peel force and w is the 
width of the adhering strip. It is seen from the 
results that this particular experimental system 
has an unexpected advantage: the bond strength 
is only moderately sensitive to the rate of detach- 
ment. The mean value for Ga, about 140 J m -2 , is 
taken here as representative of the interfacial bond 
strength at moderate rates of detachment and at 
ambient temperatures. 

4.2. Sleeve joint 
The theory developed earlier predicts that the 
failure force or failure torque will be independent 
of the length of the joint. This means that a con- 
stant failure force or torque is to be expected. This 
is observed in practice with the sleeve joint. Once 
failure has been initiated, it continues at constant 
force or torque. 

The results obtained for the failure forces and 
torques with the sleeve joint under tension or 

TABLE II Results for sleeve joints 

Radius (rnm) Length (mm) Tension 

F~ (N) 

6.35 15 40 • 2 
6.35 35 42 • 2 
9.55 35 77 • 2 

11.35 35 113 • 11 

torsion are summarized in Table II. Values of Ga 
have been calculated from them using Equations 
7 and i 1. 

It is seen from Table II that the values of Ga 
obtained in this way, ranging from 104 to 180 
J m -2 , are in fairly good agreement with each 
other and with the value obtained from the peel 
experiments (about 140 J m -2). Considering the 
very different deformations applied to the joints 
and the fact that the equations used to calculate 
Ga have no adjustable parameters and rather 
strong and different dependences on the radius a 
of the specimen, this agreement is regarded as 
quite satisfactory. However, there is some indica- 
tion that larger values of G a are obtained with 
specimens of larger radius. This may be due to 
the relatively small length of the bonded part of 
the specimens in these cases. One assumption of 
the theoretical analysis, that the bonded part of 
the specimen is effectively unstrained, will cease 
to hold when the radius of the cylinder becomes 
comparable in size to the length of the bonded 
part. 

4.3.  Rod jo in t  
The failure of a rod joint was found to take place 
quite differently in tension and in torsion, than in 
compression. Experiments in compression with an 
embedded aluminium rod of 5 mm radius gave 
values for the failure force of 94 + 11 N and hence 
a value for the effective fracture energy Ga of 
184 + 39 J m -2 , in reasonably good agreement 
with values obtained previously. However, in both 
tension and torsion, no well-def'med failure load 
was observed. Instead, the tensile force or torque 
increased continuously during the experiment 
until catastrophic failure took place. Examination 
of the recorded plots of load against time often 
showed a discontinuity at loads less than the final 
fracture load, when bond failure may have been 
initiated, but this point was not well.def'med and 
much larger loads were required to cause fracture 
of the joint. The final breaking force or torque has 
been taken here as the failure load. 

Torsion 

G a (J m -2 ) Mf (Nm) G a (J In -~) 

104 • 11 0.112 • 0.007 106 -+ 14 
112-+ 12 0.112 • 0.005 106 • 9 
109-+ 5 0.343 • 0.005 129 • 4 
141 -+ 28 0.626 +- 0.013 180 -+ 8 
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TABLE III Results for rod joints (rod radius 5 ram) 

Mode of deformation Failure load (N) G a (J m-2) 

Tension 250 • 49 1880 • 810 
Compression 94 • 11 184 • 39 
Torsion 1.18 -+ 0.20* 1060 • 380 

*In units of Nm. 

Values of the failure loads in tension and tor- 
sion are given in Table llI for a rod joint having an 
embedded rod of 5 mm radius. Values of the 
apparent fracture energy G a calculated from the 
observed failure loads are also given in Table III. 
They are seen to be much greater than before. 
Measurements with embedded rods of different 
radii are reported in Table W. They reveal that 
the apparent fracture energy increases as the radius 
of the embedded rod increases. Only for rods of 
relatively small radius are the calculated fracture 
energies comparable to those obtained previously; 
otherwise, they are considerably larger. Clearly, a 
significant factor has been omitted from the theo- 
retical analysis for the cases of a rod joint subjected 
to tension or torsional loading, and this factor 
becomes increasingly important as the radius of 
the embedded rod is increased. It is attributed to 
frictional effects, for the following reasons. 

Referring to the sketch in Fig. 2a, it has been 
assumed that a Region B of debond develops dur- 
ing tension or torsional failure of a rod joint. This 
region is essentially a rubber tube, placed in 
tension or torsion by the applied forces after 
debonding. Now, on stretching a rubber tube, 
the radius tends to undergo Poissonian contrac- 
tion, and there is a similar tendency for the radius 
to shrink when a tube is subjected to torsion 
[16, 17]. Thus, for a rod joint under tension or 
torsion loading the debonded tube will tend to 
grip the embedded rod tightly and increase any 
frictional forces acting at the interface. On the 
other hand, for a rod joint under compressive 
loads, Fig. 2b, the rubber tube formed by debond- 

TABLE IV Results for rod joints (rods of different radii) 

ing will tend to spread outwards away from the 

embedded rod, so that frictional effects should 
be absent in this case. Similarly, for a sleeve joint 
subjected to tension or torsional loads, contraction 
of the rubber cylinder after debonding will cause 
it to move away from the surrounding rigid sleeve 
and friction effects will again be absent. 

Thus, the two test configurations which give 
rise to anomalously high failure loads and hence 
effective fracture energies, are also those for which 
the rubber section is pressed into close contact 
with the rigid inclusion after debonding. An 
approximate theoretical treatment of the corres- 
ponding frictional contribution to the work of 
detachment is given in the next section of this 
paper, and some experiments designed to minimize 
frictional effects during tension and torsional 
fracture of rod joints are described in the follow- 
ing section. 

5. Frictional contribution to the fracture 
energy for a rod joint subjected to 
tension or torsion 

5.1. Theoretical considerations 
A rather approximate estimate of the contribu- 
tion to the failure loads from friction can be made, 
as follows. It is assumed that the frictional stress, r, 
is uniform over the debonded region (B in Fig. 2a) 
and given by 

r = /.tP, (13) 

where/~ is the coefficient of friction and P is the 
normal pressure acting on the embedded rod. The 
frictional force resisting pull-out, acting over the 
Region B, is therefore given by 27raxgP and the 
additional work required to cause an incremental 
debond of length Ax is 2zraxgPeAx. Thus, the 
energy balance equation now becomes: 

F2/2rr (r ~ - -a2 )E> 27raG a + 21raxl.tPe. (14) 

The tensile strain, e, of the debonded rubber is 

Rod radius, a (mm) Tension 

Ff (N) 

Torsion 

Ga O m -~) Mf (Nm) G a (J m -2 ) 

0.85 60-+ 5 430• 80 
1.2 79 • 12 540 • 170 
2.5 179 • 13 1470 • 230 
5.0 250 • 49 1880 • 810 
7.5 346 • 31 3770 • 890 

- -  q 

0.38 ~+ 0.08 220 • 84 
1.18 • 0.20 1060 • 380 

> 2 > 2000 
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given by Fflr(r 2 - -a2)E and the pressure, P, is 
given, for small strains, by the relation [16, 17] : 

P = (r 2 --a~)Ee/3r 2. (15) 

On substituting for P and e in terms of the applied 
load, F, the pull-out force in the presence of fric- 
tion is obtained in the form 

F 2 = 4rr2a( r2 - -a2bEGa 
[I -- (4agx/3r 2)] (16) 

It is clear that the pull-out force is increased by 
friction and that it becomes larger as debonding 
continues, i.e., as x increases, so that the force 
required to propagate the debond rises continu- 
ously, rather than remaining constant. This is in 
accord with observation. Indeed, the pull-out 
force is predicted to become infinitely large when 
the debonded length x reaches a critical value, xe, 
given by 

x e = 3r2/4a#. (17) 

Thus, for thin-walled rubber tubes, a rod embedded 
to a depth much greater than its radius will be 
gripped by friction to such a degree that, even in 
the absence of bonding, pull-out will be impossible. 
The critical embedment depth xe for thick-walled 
tubes is predicted to be considerably larger, 
however. 

Devious studies of the pull-out force for 
embedded cords dealt with relatively small-radius 
cords [13]. In such cases, frictional contributions 
to the observed failure loads would be expected 
to be small, unless the cords were embedded to 
great depths, approaching xe. 

Similar considerations apply to the torsional 
failure of a rod joint in the presence of friction. 
In this case the additional work required to cause 
an incremental debond of length Ax is 2zra2pfiO 
~x,  where 0 = 6Mx/rr(r 4 - a 4 )E. 

The energy balance equation then becomes 

3M2/rr(r 4 - - a 4 ) E >  2rraG. + 2rra2t,PO. (18) 

On substituting for 0 in terms of M, and for pres- 
sure, P, from the relation [ 16, 17], 

e = E(r  2 --a2)O2/6x 2, (19) 

the failure torque, M, in the presence of friction is 
given by the following implicit relation: 

24a2/a(r ~ -- a 2 )x24 a 
M = = rr2a(r 4 - -a4 )EGa  + 7r(r 4 --a4)~E 

(20) 
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At a critical value of the debond length x, denoted 
xc, the failure torque is entirely accounted for by 
friction, even in the absence of any bonding 
( G a = 0 ) .  The corresponding torque, denoted 
Me, is the maximum that could give rise to further 
debonding. If the applied torque exceeds this 
value, then the work expended in frictional sliding 
would exceed that available so that no motion is 
possible. The critical torque is given by 

1) Me = rra 4 "-a-g + 1 7 -- E/241.tx (21) 

and the corresponding angle of rotation, 0 e, by 

( ' )  O c = ~ - + 1  /4/a. (22) 

The above theoretical considerations reveal 
that frictional effects will become important, and 
eventually dominant, for the rod joint when the 
rod diameter becomes comparable to the wall 
thickness of the rubber tube surrounding it, and 
when the depth of embedment is sufficiently large. 
Under these circumstances frictional seizure is 
predicted to occur. (The same principle is employed 
in Chinese finger cuffs: extensible tubes which 
grip the fingers more firmly the harder one tries to 
pull them out.) In the following section, experi- 
ments are described that were designed to mini- 
mize frictional effects in rod joints, and for which 
the original theoretical treatment, neglecting 
friction, should hold. 

5.2. Use of internal gas pressure to 
minimize friction in rod joints 

A small hole was drilled along the axis of the 
embedded aluminium rod to permit the applica- 
tion of nitrogen gas under pressure to the interface 
during a debonding experiment. This pressure was 
then maintained at a constant level during the 
application of tension or torsional loads. Failure 
loads were determined in this way at various 
values of applied internal pressure for specimens 
with an embedded rod of 5 mm radius. The results 
are shown graphically in Figs 5 and 6. 

As would be expected when an internal gas 
pressure is applied, tending to hold the debonded 
rubber away from the embedded rod, the measured 
failure loads were much smaller than before. They 
fell rapidly as the internal pressure was increased 
from zero up to a pressure of about 100 kPa. 
Above this pressure, further increases in pressure 
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had a smaller effect. Eventually, at a pressure of 
about 400 kPa the bond failed under the action of 
the gas pressure alone, without any additional load 
being applied. 

It is assumed that the initial rapid fall in failure 
force or failure torque with applied pressure is due 
to a concurrent reduction in friction, and at the 
critical pressure, about 100 kPa, it is assumed that 
frictional effects have been virtually overcome. 
Slow further reductions in failure loads with 
further increases in gas pressure are attributed to a 
direct contribution to the strain energy employed 
in debonding from the applied pressure itself. 

By extrapolating the relations observed at 
pressures greater than about 100 kPa, when fric- 
tional effects are assumed to be absent, back to 
zero pressure, as shown by the broken lines in 
Figs 5 and 6, values for the failure loads in the 
absence of friction were estimated. The values 
obtained in this way were a pull-out force of 
100N and a failure torque of 0.68 Nm, correspond- 
ing to values of the fracture energy, Ga, of 250 
and 350 J m -2 , respectively. These values are in 
approximate agreement with those obtained pre- 
viously from compression experiments on rod 
joints, and from tension and torsion experiments 
on sleeve joints, indicating that the applied pressure 
had, indeed, eliminated the frictional contr~ution 
to the work of  fracture. 

6. Conclusions 
The applicability of the Griffith fracture criterion 
to the failure of adhesive bonds has been subjected 
to a severe test. Two model joints have been 
examined under tension, compression and torsional 
loading and the measured failure loads compared 
to the theoretically-predicted values. Satisfactory 
agreement was obtained in all cases, except where 
frictional effects are significant; i.e., for a rod joint 
subjected to tension or torsion. When the theory 
is amended to take into account friction between 
the debonded surfaces, enhanced by the pressure 
generated ~directly by the applied load, then the 
observed increase in failure loads for rod joints is 
fully accounted for. Indeed, frictional seizure is 
predicted to occur for  deeply embedded rods. 
Even in the absence of  bonding, the;load to pull 
out or twist free such rods is predicted to be 

infinitely large, due to the self-reinforcing nature 
of the frictional resistance. 
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